03rd CINE CONFERENCE

Solar-driven reactors for CO₂ conversion using gas diffusion electrodes

<u>Jéssica Costa Alvim (PhD student)¹</u>, Nadia Guerra Macedo¹ (R), Leonardo Carvalho Soares (PhD student)¹, Caio Guilherme Pereira dos Santos (PhD student), Márcio Sangali (PhD student)², Rubens Caram Jr (R)², Dwayne Carranza (R)³, Flavia Cassiola (R)³, Bruno Leuzinger da Silva¹, Ana Flavia Nogueira (R)¹, Claudia Longo (R)¹

The search for sustainable pathways for conversion of CO₂ to value-added chemicals progressively interested researchers over the last decade. Our research group has been investigating reactors to promote solar-driven photoelectrochemical (PEC) CO₂ reduction reaction (CO₂RR). The initial results were obtained using a PEC H-cell assembled with a photo-responsive gas diffusion electrode (GDE) prepared by deposition of Cu₂WO₄ particles (a p-type semiconductor) on carbon paper placed between two titanium mesh. As photoanode, a Ti foil was covered with a film of BiVO₄ modified with Ni-Fe hydroxides, a well-known n-type semiconductor with remarkable activity for oxygen evolution reaction (OER). The Ti|BiVO₄|FeOOH|NiOOH photoanode (9.0 cm²) was associated with the GDE|Cu₂WO₄|Ti-mesh photocathode (7.5 cm²) under CO₂ flow in a PEC Hcell, using NaHCO₃ aqueous solution as electrolyte (ca. 150 mL). Under irradiation, with no external bias, this PEC-reactor exhibited an open circuit potential of 0.4 V and a short-circuit photocurrent of ca. 0.7 mA, and continuously sustained OER and CO₂RR. The main liquid product generated from CO_2RR in this system was ethanol with a Faradaic Efficiency of (14 ± 3) %. Using another reactor with electrolyte flow, we are also evaluating the GDE|Cu₂WO₄ performance and the CO₂RR products selectivity. Recently, we are also investigating the CO₂RR using another PEC reactor that was 3-D printed with ABS (Acrylonitrile Butadiene Styrene) filament. Thus, since the reactors configuration should fill requirements such as light transmittance, gas permeability, mass exchange, and suitable electrical contacts, this configuration is a remarkable challenge to achieve sustainable pathways for CO₂ conversion.

Keywords: Photoelectrochemical reactors, CO₂RR, solar-driven, gas diffusion electrode.

Support/Acknowledgements:

The authors gratefully acknowledge support from CINE, FAPESP (Processes 2021/05853-8 and process 2017/11986-5), UNICAMP, CNPEM, CNPq and CAPES.

¹Institute of Chemistry, University of Campinas – UNICAMP (Brazil)

²School of Mechanical Engineering – UNICAMP (Brazil)

³Shell Technologies Center Houston